

Journal of Digital Economy

RISK MANAGEMENT AND PROJECTS SUCCESS: A CASE OF UMUCYO REAL ESTATE CONTRACTOR IN KIGALI, RWANDA

Vivens Kamirindi

(Department, Business Administration, Mount Kenya University, Rwanda) Co-author: Dr. Gitahi Njenga

(Department, Business Administration, Mount Kigali University)

Abstract:

Background: The main objective of this research project was to assess the role of project risk management on construction projects success in Rwanda a case study of Umucyo Real Estate Contractor project of RSSB. The study was focusing on specific problems such as to find out risk management practices applied by Umucyo Real Estate Contractor project, and level of performance and assessing the relationship between risk management and project success. The study used both descriptive and analytical study design. The target population was 65 RSSB staff employed in divisions that are closely related to the area of research such as institutional planning, real estate, portfolio management, finance, and quality assurance and internal audit. Others informants were also included such as engineers, site works and Guriro sector authorities. Others sources also used engineers, managers of Contractor Company. The sample size was 56 employees was calculated using Sloven's formula.

Materials and Methods: This study used Network Theory and Portfolio Theory. Self-administered questionnaires, and Data collection instruments were both primary and secondary, which included questionnaires; interview guide and documentary review and a purposive sampling technique were used. Data were analyzed Using computer software called Statistical Package for Social Scientists (SPSS) version 2.1. An interview was conducted to collect data from the respondents that consisted of project managers, and supervisors.

Results: The study established that there existed a positive relationship between risk management strategies and project success Umucyo Real Estate Contractor. The research realized the importance of risk management practices in project management to achieve process success. Projects managers apply risk management effectively and efficiently the study revealed that all elements of risk management had appositive relationship with project performance at a significance level of 0.01. Results further indicate that project risk management practices had a very strongly positive correlation with project performance (sig: 0.000 < 0.001).

Conclusion: Based on findings we can conclude that risk management practices have contributed to Umucyo Real Estate Contractor project success as shown by inferential statistics, where Chi-Square was used to indicate whether there is high relationship.

Key words: Risk Management, Projects Success, Umucyo Real Estate Contractor, Rwanda.

i. Introduction

The success and sustainability of a project is very closely tied to its project risk management process. Projects often fail due to poor risk management, many times because they do not define the risks and constraints well or take important factors into consideration such as the needs and views of everyone involved in and affected by the project. Effective project risk management provides detail and structure to project work plans and establishes a way to continue the project after the grant funding ends, meaning it is sustainable (Andersen, 2010). Project risk management can be an intimidating endeavor, especially for a group or community implementing the process for the first time. It is important to remember there is not really a "wrong" way to plan a project. Oftentimes, the process will take a logical course by itself once you begin, with one-step naturally leading into another. Often, project risk management begins with the formation of a local project risk management committee or group. Whenever possible, tribes and organizations should use a team approach to plan new projects, which involves staff, community members, community or organizational leadership, and a grant writer or consultant if necessary. The committee members play an important role in keeping the project risk management process on track while also ensuring everyone has the opportunity to participate. The committee can organize meetings, conduct surveys, gather and analyze information, and meet with other agencies and organizations (Cioffi, 2002).

Perhaps one of the most daunting aspects of project risk management is ensuring community involvement, because it requires the knowledge and skills necessary to set up and conduct or facilitate effective project risk management sessions, large meetings, and presentations. Public meetings are essential to the development of a project with broad grassroots support. Meetings should be held regularly throughout the project risk management process. Properly facilitated meetings provide a great way to gather traditional and local knowledge. They also serve as a means to receive input on goals, objectives, and activities in order to determine ways to best prioritize them. Good project risk management is good stewardship. Success in any endeavor requires careful preparation and project risk management. Without proper project risk management and preparation, failure is almost guaranteed (Thomsett, 2012).

The key components of project risk management' include an understanding of the project's vision, mission, values and strategies. The vision and mission are often captured in a Vision Statement and Mission Statement. Vision: outlines what the project wants to be, or how it wants the world in which it operates to be. It is a long-term view and concentrates on the future. It can be emotive and is a source of inspiration. Mission: Defines the fundamental purpose of the project or an enterprise, describing why it exists and what it does to achieve its vision.

Values: Beliefs that are shared among the stakeholders of a project. Values drive a project's culture and priorities and provide a framework in which decisions are made. Rwanda Social Security Board launched a construction project for housing units for the low and middle-income earners, upon completion, the houses were to be acquired through a mortgage arrangement that was provided by various commercial banks, which had promised to support the project. RSSB has

always undertaken various projects that are all accomplished successfully. The main objective of this study was to assess the impact of project risk management in the success of projects in Rwanda. It was guided by the following specific objectives:

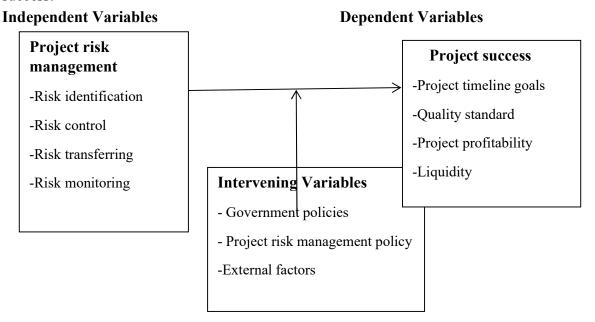
- i. To identify the risk management practices applied in Umucyo real estate contractor project.
- ii. To examine the Key risk factors faced by Umucyo Real Estate Contractor in managing construction projects.
- iii. To assess the relationship between project risk management and success of Umucyo real estate contractor project.

ii. Theoretical Framework

Network Theory

Network theory originality lays in the application of some network theory indicators to the project risk management field (Olsson, 2008). Tools that are currently employed in risk assessment are often sufficient, but model complexity and limitations of computational power can tether risk assessors to involve more causal connections and account for more Black Swan event outcomes. By applying network theory tools to risk assessment, computational limitations may be overcome and result to a broader coverage of events with a narrower range of uncertainties.

Decision-making processes are not incorporated into routine risk assessments; however, they play a critical role in such processes. It is therefore very important for risk assessors to minimize confirmation bias by carrying out their analysis and publishing their results with minimal involvement of external factors such as politics, media, and advocates (Chacko & Harris, 2006). The study is based on network theory to deal with risk assessment and interactions in construction enterprise projects. Indeed, such projects are exposed to numerous and interdependent risks of various nature, which makes their management more difficult. In this study the network theory is presented aiming at identifying key elements in the project structure of interrelated risks potentially affecting a project (Hamimah & Adnan, 2008). This analysis serves as a powerful complement to classical project risk analysis. The construction of the risk network requires the involvement of the project manager and other team members assigned to the risk management process.


Portfolio Theory

Portfolio theory of construction project which tries to maximize portfolio expected return for a given amount of project risk, or equivalently minimize risk for a given level of expected return, by carefully choosing the proportions of the project (Hamimah, 2008) Portfolio Theory is a mathematical formulation of the concept of diversification in investing, with the aim of selecting a collection of investment project that has collectively lower risk than any individual project. A collection of both types of project units can therefore have lower overall risk than either individually. Diversification on the other hand lowers risk even if projects returns are not negatively correlated indeed, even if they are positively correlated (Ritchie & Bridley, 2005).

More technically, portfolio theory models project performance as a normally distributed such that it defines project risk as the standard deviation of project objective and model a portfolio as a weighted combination of project so that the achieved success of a portfolio is the weighted combination of the project performance. By combining different project units whose returns are not perfectly positively correlated, portfolio theory seeks to reduce the total variance of the portfolio return. Portfolio theory also assumes that investors are rational and markets are efficient (Sharpe, 2004).

iii. Conceptual Framework

This conceptual framework shows how project risk management affects the construction project success.

Source: Researcher (2024)

Figure 1:Conceptual Framework

Project risk assessment influence mitigation of project risks, information and risk evaluation leading to successful risk management leading to completing construction development in time. The assessment of project risks led to adoption of avoidance technique to risks, the communication on risks facing enterprises is effective, assessing time available for the construction project reduce project risks and that leading to successful construction designing. There is positive significant impact of project risk identification and construction through risk registration, use of checklist, risk controls and screening of project risks influencing project success and improve quality in construction products to a great extent and achievement of project goals.

This because project risk identification and management by use of checklist, risk controls and screening of project risks reducing of project loss and development of quality in construction largely

93

iv. Research Methodology

Research Design

The researcher adopted a descriptive and analytical research design. These methods were used because descriptive design helps to systematically ascertain and describe the characteristics of the variables. The evaluative research design helped to ascertain to ensure that issues related to risk management and success of construction project are described and analyzed to permit reliable conclusions. Analytical characteristics of variables and situations were based on qualitative and quantitative data from both primary and secondary sources.

Target Population

The population in a research refers to all items in a unit of inquiry (Kothari, 2011). The population of the research was 65 employees of Rwanda Social Security Board headquarters located in Kiyovu Kigali City.

Study Population

Table 1: Population of the Respondent

Category	Population	
Senior managers	4	
Supervisors	12	
Lower staff	33	
Support staff	16	
Total	65	

Source: RSSB Human resource Office

Sample Design

The sample size for this study was 56 respondents representing 65 staff working in selected departments. The rationale was as follows; 4 senior managers, 8 supervisors and (30) lower staff and 15 supporting as informants. The study considered a sample size within the cost constraint and provide the ability to detect an independent variable effect.

Sample Size

The number of items to be selected from the population to constitute a sample (Kothari, 2011). The sample size of the population was selected using the solven's formula $n = \frac{N}{1+N(e)2}$

Where n is the sample size, N is the population of the study, and e is the sampling error (0.05).

Therefore,
$$n = \frac{65}{1+65(0.05)2}$$

$$n = \frac{65}{1 + 0.1625}$$

$$n = \frac{65}{1.1625} = 56$$

Therefore, the sample size of the research was 56 employees of Umucyo real estate contractor project in Rwanda Social Security Board.

Table 2: The Sample Size Of the Study

Category	Population	Sample size
Senior managers	4	3
Supervisors	12	8
Lower staff	33	30
Support staff	16	15
Total	65	56

Source: Primary data, 2019

Sampling Techniques

The sampling technique in this study was stratified random sampling method. The stratified random sampling was used because population was not homogeneous and combining both stratified and simple random sampling methods. Therefore, the rationale for the use of this stratified random sampling technique was used to reduce sampling errors because the elements (respondents) within each stratum are as homogeneous as possible. This technique enabled the researcher to collect data, analyze it and interpret it according to the strata. A purposive sampling technique was used since it enabled the researcher to pick respondent who best meet the purpose of the study especially the coordinator of construction projects in RSSB and different engineers involved in construction projects.

Data Collection Instruments

Primary Data

In the case of this research, primary data was collected from both qualitative and quantitative techniques. Zahle (2019) argues that the use of multiple methods provides a better opportunity for the researcher to answer questions set out for study and allows for better evaluation of the research findings which can be entrusted and inferences made from them.

Ouestionnaire

A self - administered questionnaire was designed to the respondents(staff) working in the different departments dealing with risk management in the period under study, to collect quantitative data from respondent's area, through semi - administered structured questionnaires with mainly closed and some ended questions. The questionnaire was designed in such way as to elicit information on all components under the study. It was designed for primary data collection and translated in Kinyarwanda as administrated by the researcher.

Interviews

Interviews enable researcher to get new ideas and get detailed responses thus providing good quality information. In this regard, the interview was used in this research to provide new ideas from high-level authorities of RSSB projects' coordinators.

95

Secondary Data

The secondary data was collected from text books, national documentaries and journals. The data collected included both qualitative and quantitative information. Secondary data was also obtained from website of RSSB.

v. Research Findings and Discussion

Demographic Characteristics of Respondents

Table 3: Demographic Characteristic by Gender

Gender	Frequency of Respondents	Percentage
Male	35	62%
Female	21	37%
Total	56	100%

Source: Researcher, 2019

The table 3 shows that the respondents who participated in the research was dominated by male with frequency of 35 respondents such as 62% compared to female with frequency of 21 respondents which make 37%. The results prove the fact that many of respondents involved in construction project area and male occupies ranking decision-making post.

4.2 Presentation of Findings

This research study was carried out to investigate the effect of project risk management and project performance of construction projects in umucyo real estate. During this research study, the findings were analyzed and interpreted in order to evaluate whether the project risk management factors and tools have any effect on the project success contract of construction projects in Umucyo Real Estate The following tables provide a detail analysis on how project risk management can affect project performance.

Risk Management Practices Applied In Umucyo Real Estate Contractor Project
Table 4: Risk Management Practices Applied In Umucyo Real Estate Contractor Project

Risk identification	Strongly	agree	Not sure	disagree	Strongly
	agree				disagree
Information gathering technique	37%	44%	3%	8%	5%
Brain storming	26%	42%	8%	12%	8%
Interviewing	44%	26%	7%	14%	7%
Root causes analysis	37%	32%	8%	10%	10%
Checklist analysis	37%	33%	10%	10%	7%
Assumption analysis	44%	12%	9%	11%	10%
Swot analysis	35%	25%	16%	12%	10%

Source: Primary data, 2019

In the Table 4 out of the 56 respondents, 37% strongly agreed that information-gathering technique is a characteristic of risk identification, 44% agreed with the statement, 3% were not sure about the statement, 8% disagreed with the statement, 5% strongly disagreed with the statement. Table 4.4 shows that out of the 56 respondents, 26% strongly agreed that brainstorming is a characteristic of risk identification. Additionally, 42% agreed with the statement, while 8% were unsure, and 12% disagreed with the notion that brainstorming contributes to risk identification. Furthermore, 5% disagreed with the statement that brainstorming is a characteristic of risk identification. In Table 4, it is evident that out of the 56 respondents, 44% strongly agreed that interviewing is a characteristic of risk identification. Alongside this, 26% agreed with the statement, while 7% were unsure, and 14% disagreed with the idea that interviewing plays a role in risk identification. Furthermore, 7% disagreed with the statement that interviewing is a characteristic of risk identification.

Table 4 presents the responses from a total of 56 participants regarding their perception of root cause analysis as a risk identification factor. Among the respondents, 37% strongly agreed that root because analysis is associated with risk identification, while 32% simply agreed with this statement. Only 8% expressed uncertainty about the relationship between root cause analysis and risk identification. On the other hand, 10% disagreed with the notion that root cause analysis is connected to risk identification.

Similarly, Table 4 also provides insights into the participants' views on assumptions as a risk identification factor. Out of the 56 respondents, 37% strongly agreed that assumptions play a role in risk identification, and 33% agreed with this statement. Meanwhile, 10% were uncertain about the association between assumptions and risk identification. Additionally, 10% disagreed with the idea that assumptions contribute to risk identification, and 7% held a differing opinion on this matter. Table 4 shows the responses of 56 participants regarding the statement "SWOT analysis is a useful tool for risk identification." Among the respondents, 35% strongly agreed with the statement, 25% agreed, 16% were uncertain, 12% disagreed, and 10% strongly disagreed.

Risk Analysis Or Risk Assessment Table 1 Risk Analysis Or Risk Assessment

Risk Analysis Or Risk Assessment	Strongly	agree	Not sure	disagree	Strongly
	agree				disagree
Risk probability and impact assessment	44%	25%	14%	10%	7%
Probability and impact matrix	25%	41%	16%	10%	7%
Risk categorization	48%	28%	10%	7%	5%
Risk urgency assessment	41%	35%	8%	8%	5%
Expert judgment	46%	21%	14%	10%	7%
Interviewing	48%	26%	12%	5%	7%

Source: Primary data, 2019

Table 5 shows the responses of the 56 participants regarding their agreement or disagreement with the idea that risk probability and impact analysis and probability and impact matrix are important elements in risk analysis or risk assessment. Among the respondents, 42% strongly agreed that risk probability and impact analysis is a crucial component of risk analysis or risk assessment. Additionally, 25% agreed with this statement, while 14% were unsure about its validity. On the other hand, 10% disagreed with the notion that risk probability and impact analysis is a character of risk analysis or risk assessment, and another 7% strongly disagreed.

Table 5 also indicates the participants' views on the significance of the probability and impact matrix in risk analysis or risk assessment. Of the 56 respondents, 25% strongly agreed with its relevance, and 41% agreed with this statement. Similarly, 16% were unsure about the importance of the probability and impact matrix, while 10% disagreed and 7% strongly disagreed.

Table 5 shows the responses of the 56 participants regarding their agreement with the statement on risk categorization to risk analysis or risk assessment. It is observed that 48% strongly agreed with the statement, while 28% agreed. Additionally, 10% expressed uncertainty, 7% disagreed, and 5% strongly disagreed with the statement. Similarly, in the case of risk urgency assessment to risk analysis or risk assessment, 41% of the respondents strongly agreed with the statement, while 35% agreed. Furthermore, 8% were uncertain, 8% disagreed, and 5% strongly disagreed with the statement.

Table 5 presents the results of a survey conducted among 56 respondents regarding their views on the use of expert judgment in risk analysis or risk assessment. Among the respondents, 46% strongly agreed with the statement, 21% agreed, 14% were unsure, 10% disagreed, and 7% strongly disagreed. Similarly, Table 5 also provides the findings for the respondents' opinions on the use of interviews in risk analysis or risk assessment. Out of the 56 respondents, 48% strongly agreed, 26% agreed, 12% were unsure, 5% disagreed, and 7% strongly disagreed with the statement.

Risk Analysis Or Risk Assessment
Table 2: Risk Analysis Or Risk Assessment

risk response development	Strongly	agree	Not sure	disagree	Strongly
	agree				disagree
Risk reassessment	48%	33%	7%	5%	5%
Risk audit	44%	32%	7%	5%	10%
Variance and trend analysis	41%	23%	16%	12%	7%
Technical performance measurement	50%	35%	12%	10%	3%
Reserve analysis	39%	28%	14%	10%	8%

Source: Primary data, 2019

Table 6 out of the 56 respondents, 48 % had strongly agreed that risk assessment are one of the risk development 33% agreed with the statement that risk assessment are one of the risk development, 7 % were not sure with the statement that risk assessment are one of the risk development 5 % disagreed with the statement that risk assessment are one of the risk

98

ISSN:2773-0670

development,5 % disagreed with the statement that risk assessment are one of the risk development,

Table 6 out of the 56 respondents, 44 % had strongly agreed that risk audit are one of the risk development 32% agreed with the statement that risk audit are one of the risk development ,7 % were not sure with the statement that risk audit are one of the risk development 5 % disagreed with the statement that risk audit are one of the risk development, 10 % disagreed with the statement that risk audit are one of the risk development, Table 6 out of the 56 respondents, 41 % had strongly agreed that variance and trend analysis are one of the risk development 23% agreed with the statement that variance and trend analysis are one of the risk development ,16 % were not sure with the statement that variance and trend analysis are one of the risk development, 7 % disagreed with the statement that variance and trend analysis are one of the risk development, 7 % disagreed with the statement that variance and trend analysis are one of the risk development, 7 % disagreed with the statement that variance and trend analysis are one of the risk development,

Table 6 out of the 56 respondents, 50 % had strongly agreed that Technical performance measurement are one of the risk development 35% agreed with the statement that Technical performance measurement are one of the risk development, 1 % were not sure with the statement that Technical performance measurement are one of the risk development 8 % disagreed with the statement that Technical performance measurement are one of the risk development, 3% disagreed with the statement that Technical performance measurement are one of the risk development,

Table 6 out of the 56 respondents, 39 % had strongly agreed that research analysis are one of the risk development 28% agreed with the statement that research analysis are one of the risk development, 12 % were not sure with the statement that research analysis are one of the risk development 10 % disagreed with the statement that research analysis are one of the risk development, 8 % disagreed with the statement that research analysis are one of the risk development.

Risk Factors Faced By Umucyo Real Estate Contractor In Managing Construction Projects Frequencies and percentage were preferred statistic for analysis of the objective two this statistic help to establish the involvement of unucyo real estate Project on managing on umucyo Project in real management planning influence the investigation in this manner open with clear insight for the level of the concurrency.

Table 3 Risk Factors Faced By Umucyo Real Estate Contractor In Managing Construction Projects

Risk response development	Strongly	agree	Not sure	disagree	Strongly
	agree				disagree
Advantage of risk management	41%	23%	12%	10%	12%
Risk management success of a project	30%	32%	7%	14%	8%
Governance regulation	33%	26%	16%	12%	10%
Risk breakdown structure	42%	26%	12%	10%	7%
Unrealistic budget estimates	46%	21%	10%	10%	10%

99

Budget constraint	35%	32%	16%	8%	7%
Timing contra it	33%	28%	14%	2%	10%
Lack of quality of work	50%	28%	54%	8%	7%

Source: Primary data, 2019

Table 7 out of the 56 respondents, 41 % had strongly agreed that research inflation one of the risk development 23% agreed with the statement that inflation are one of the risk development, 12 % were not sure with the statement that inflation are one of the risk development 10 % disagreed with the statement that inflation are one of the risk development, 12 % disagreed with the statement that inflation are one of the risk development,

Table 7 indicates that out of the 56 respondents, 30 % had strongly agreed that research exchange rates one of the risk development 32% agreed with the statement that inflation are one of the risk development, 14 % were not sure with the statement that exchange rate are one of the risk development 14 % disagreed with the statement that exchange rate are one of the risk development, 8 % disagreed with the statement that exchange rate are one of the risk development,

Table 7 indicates that out of the 56 respondents, 33 % had strongly agreed that research exchange rates one of the risk development 26% agreed with the statement that inflation are one of the risk development, 16 % were not sure with the statement that exchange rate are one of the risk development 12 % disagreed with the statement that exchange rate are one of the risk development, 10 % disagreed with the statement that exchange rate are one of the risk development,

Table 7 indicates that out of the 56 respondents, 42 % had strongly agreed that Risk breakdown structure one of the risk development 26% agreed with the statement that inflation are one of the risk development, 12 % were not sure with the statement that Risk breakdown structure are one of the risk development 10 % disagreed with the statement that Risk breakdown structure are one of the risk development, 7 % disagreed with the statement that Risk breakdown structure are one of the risk development, Table 7 indicates that out of the 56 respondents, 46 % had strongly agreed that unrealistic budget estimate one of the risk development 21% agreed with the statement that unrealistic budget estimate are one of the risk development, 10 % disagreed with the statement that unrealistic budget estimate are one of the risk development, 10 % disagreed with the statement that unrealistic budget estimate are one of the risk development, 10 % disagreed with the statement that unrealistic budget estimate are one of the risk development, 10 % disagreed with the statement that unrealistic budget estimate are one of the risk development.

Table 7 indicates that out of the 56 respondents, 35 % had strongly agreed that budget constraint one of the risk development 32% agreed with the statement that budget constraint estimate of the risk development, 16 % were not sure with the statement that budget constraint are one of the risk development 8 % disagreed with the statement that budget constraint are one of the risk development, 7 % disagreed with the statement that budget constraint are one of the risk development.

Table 7 indicates that out of the 56 respondents, 33 % had strongly agreed that timing constraint one of the risk development 28% agreed with the statement that timing constraint estimate of the risk development, 14 % were not sure with the statement that timing constraint are one of the risk development 2 % disagreed with the statement that timing constraint are one of the risk

development,10 % disagreed with the statement that timing constraint are one of the risk development,

Table7 indicates that out of the 56 respondents, 50 % had strongly agreed that lack of quality of work one of the risk development 28% agreed with the statement that lack of quality of work of the risk development,54 % were not sure with the statement that lack of quality of work are one of the risk development 8 % disagreed with the statement that lack of quality of work are one of the risk development, 7 % disagreed with the statement that lack of quality of work are one of the risk development.

Correlation Analysis of Risk Factors And Contractor In Managing

Table 4 Correlation Analysis of Risk Factors And Contractor In Managing Correlations

		Inflation	Exchanges Rates
	Pearson Correlation	1	.277*
Inflation	Sig. (2-tailed)		.039
	N	56	56
	Pearson Correlation	.277*	1
exchanges rates	Sig. (2-tailed)	.039	
	N	56	56

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Resource: Primary data, 2019

Table 8 indicate that project acceptability is significantly correlated to performance (r=.646 p<0.01). This implies that project acceptability would result to performance of EYICM Project in Bugesera District in Bugesera District

Relationship between Project Risk Management And Success Of Umucyo Real Estate Contractor Project

Table 5: Relationship Between Project Risk Management And Success Of Umucyo Real Estate Contractor Project

risk response development	Strongly	agree	Not sure	disagree	Strongly
	agree				disagree
Advantage of risk management	41%	23%	12%	10%	12%
Risk management success of project	30%	32%	7%	14%	8%
Risk management influence the success	33%	26%	16%	12%	10%
Lack of quality of work	50%	28%	54%	8%	7%

Source: Primary data, 2019

Table 9 indicates that out of the 56 respondents, 42 % had strongly agreed that Advantage of risk management, 26% agreed with the statement that Advantage of risk management, 16 % were not

101

ISSN:2773-0670

sure with the statement that Advantage of risk management 14% disagreed with the statement that Advantage of risk management. Table 9 indicates that out of the 56 respondents, 48% had strongly agreed that Risk management success of project, 35% agreed with the statement that Risk management success of project, 8% were not sure with the statement that Risk management success of project 7% disagreed with the statement that Risk management success of project. Table 9 indicates that out of the 56 respondents, 39% had strongly agreed that Lack of quality of work, 39% agreed with the statement that Lack of quality of work, 12% were not sure with the statement that Lack of quality of work.

vi. Conclusion

The study concluded that construction project risk assessment influence mitigation of project risks, information and risk evaluation leading to successful risk management leading to completing of construction project in time. The assessment of project risks led to adoption of avoidance technique to risks, the communication on risks facing projects is effective, assessing time available for the construction project reduce project risks and that leading to successful project.

From the findings, the study concluded that there existed a positive significant impact of project risk identification and project success through risk registration, use of checklist, risk controls and screening of project risks influencing project success and improves quality in construction out come and development to a great extent and achievement of project goals. This because construction project risk identification and management by use of checklist, risk controls and screening of project risks reduce project loss and enhance development of quality in construction project to a great positive extent.

vii. References

- Caudill Jr, D. T. (2021). Risk-Driven Business Continuity Model for SMBs: A Factor Analysis (Doctoral dissertation, Northcentral University).
- Chapman, C. (1997). Project risk analysis and management: PRAM the generic process. International Journal of Project Management, 15(5): 273–281.
- Cicmil, S., Cooke-Davies, T., Crawford, L., & Richardson, K. (2009). Complexity and the paradox of project control, in: Proceedings of the 9 th IRNOP conference, Berlin Germany, October 11-13.
- Clark, R.C., Pledger, M., & Needler, H.m.j. (1990), Risk analysis in the evaluation of non-aerospace projects. Risk Management, Vol. 8 No 1, pp. 17-24. DOD 5000.2-R, 2002. Mandatory Procedures for Major Defense Acquisition Programs (MDAPS) and Major Automated Information Systems (MAIS).
- Cleland, D.I. & Ireland, L.R. (2002), Project Management: Strategic Design and Implementation, McGraw-Hill, Boston, MA.
- Cooper, D. R. & Schindler P. S. (2008). International Edition: Business Research Methods. (8th ed.); New Delhi; MacGraw-Hill.

- Culler S. & Watson E., (2009), —The Degree of Relationship between Critical Success Factors and Information Technology Project Performancel. Ph.D Thesis, University Of Phoenix February.
- De Bakker K., Boonstra A., & Wortmann H. (2010). Does risk management contribute to IT project success? A meta-analysis of empirical evidence. International Journal of Project Management, 28(5), 493-503
- Didenko I. & Konovets I., (2008), —Success Factors in Construction Projects: A Study Of Housing Projects In Ukrainel, Master Thesis. Umeå University
- Dikmen I et al., (2008), —Learning From Risks: A Tool for Post-Project Risk Assessment , Automation In Construction, 18 (1): 42–50
- Eisenhardt, K.M. (2010), Building Theories from Case Study Research. The Academy of Management Review, Vol.14 No 4, pp. 532-550.
- El-Sayegh S., (2020), —Risk Assessment and Allocation in the UAE Construction Industry I, International Journal Of Project Management, 26 (4): 431–438
- Ewer, Y. Mustafa, M.M. (2008) the Impact Of Risk Management On IS Projects Success In Syria, Proceeding In International Conference On Telecommunication Technology And Applications, 1-6, Damascus.
- Fewings, P., 2005. Construction Project Management: An Integrated Approach. Abingdon: Taylor And Francis.
- Flanagan, R. and Norman, G. (1993). Risk Management and Construction. Oxford: Blackwell.
- G. Sweis, et al., (2008), —Delays In Construction Projects: The Case Of Jordan^{II}, International Journal Of Project Management, 26 (6): 665–674.
- Gelbard, R. & Carmeli, A. (2009). The interactive effect of team dynamics and organizational support on ICT project success. International Journal of Project Management, 27(2), 464 470. doi:10.1016/j.ijproman.2008.07.005
- Godfrey, P. (1995). The control of risk. In J. Uff and A.M. Odams (ed.). Risk Management and Procurement. London: Centre of Construction Law and Management, King's College, 29–47.
- Hamimah A. (2008). An assessment of risk management in joint venture (JV) in Malaysia. Asian Social Science, 4(6), 99-106.
- Han, R. & Huang, G. (2007), An empirical Analysis of Risk Assessment and Performance on software projects. Project Management Journal, Vol. 37 No 3, pp. 37-48.
- He, Z. (1995). Risk management for overseas construction project. International Journal of Project Management, 13(4): 231–237.
- Hillson D., 2006, Integrated Risk Management As A Framework For Organisational Success, PMI Global Congress Proceedings, Seattle Washington
- Hillson, D. (2002), Extending the risk process to manage opportunities. International Journal of Project Management, Vol. 20 No 3, pp. 235-240.
- Huang, D., Chen, T., & Wang, M.-J. (2001). A Fuzzy Set Approach For Event Tree Analysis. Fuzzy Sets And Systems, 118 (1): 153–165.

- IBBS, C.W., Kwak, Y.h. (2000), Assessing project management maturity. Project Management Journal, Vol. 31 No 1, pp. 32-43.
- Jaafari, A. (2001). Management of risks, uncertainties and opportunities on projects: Time for a fundamental shift. International Journal of Project Management, 19(2): 89–101.
- Jannadi, O.A. (2007). Risks associated with trenching works in Saudi Arabia. Building and Environment, 43(5): 776–781.
- Juliane, S. & Alexander, K. (2013) Influence portfolio risk management influences IT project portfolio success in IT enterprises in UK. International Journal of Project Management, Vol. 26, pp. 73-79.
- Zahle, J. (2019). Data, epistemic values, and multiple methods in case study research. Studies in History and Philosophy of Science Part A, 78, 32-39.
- Zhang, S., Loosemore, M., Sunindijo, R. Y., Galvin, S., Wu, J., & Zhang, S. (2022). Assessing safety risk management performance in Chinese subway construction projects: A multistakeholder perspective. Journal of Management in Engineering, 38(4), 05022009.